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We study the physical content of the Snider quantum transport equation and 
the origin of a puzzling feature of this equation, which implies contradictory 
values for the one-particle density operator. We discuss in detail why the two 
values are in fact not very different provided that the studied particles have suf- 
ficiently large wave packets and only a small interaction probability, a condition 
which puts a limit on the validity of the Snider equation. In order to improve 
its range of application, we propose a reinterpretation of the equation as a 
"mixed" equation relating the real one-particle distribution function (on the left- 
hand side of the equation) to the "free" distribution (on the right-hand side), 
which we have introduced in a recent contribution. In its original form, the 
Snider equation is valid only when used to generate Boltzmann-type equations 
where collisions are treated as point processes in space and time (no range, no 
duration); in this approximation, virial corrections are not included, so that the 
real and free distributions coincide. If the equation is used beyond this 
approximation to generate nonlocal and density corrections, we conclude that 
the results are not necessarily correct. 

KEY WORDS:  Boltzmann equation; transport equation; Snider equation; 
BBGKY hierarchy; virial corrections; molecular fields. 

1. I N T R O D U C T I O N  

In the study of transport properties of dilute gases with internal quantum 
numbers (e.g., spin), a well-known starting point is the so-called 
Waldmann-Snider quantum transport theory. (1,2) Actually, a closer inspec- 
tion shows that the theories of these two authors are substantially different, 
even if they both lead to the same results in the limiting case where the 
duration and range of collisions are ignored: one then simply recovers the 
Boltzmann equation (or Wang Chan~Uhlenbeck equation (3) if the par- 
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726 Lalo~ and Mu l l i n  

ticles have internal variables but only diagonal internal density matrices) 
with merely the inclusion of quantum instead of classical cross sections 
inside the collision integral. 

Waldmann's approach to the problem is to consider in each cell of the 
one-molecule phase space a large number of wave packets, each with inter- 
nal variables described by a density operator, and to study the effect of 
collisions between the wave packets on the physical observables; from this, 
he infers a transport equation in which the scattering amplitude for a 
binary collision appears as a coefficient. In other words, he uses the 
approach of the atomic or molecular physicist: the effect of each collision 
is studied as in a beam-to-beam collision experiment, and the results of this 
study are put almost by hand in the right-hand side of a kinetic equation. 
This physically intuitive point of view is also that taken more recently/4) for 
the study of the effects of particle indistinguishability and spin on the 
transport properties of quantum gases, including spin waves. 

Snider, on the other hand, develops more elaborate considerations 
involving the use of unitary M611er operators O, propagators G, and 
Wigner transforms. His formalism allows one to recover Waldmann's 
results, and therefore the Boltzmann equation, in the limiting case where 
the distribution function varies slowly on a microscopic scale; moreover, it 
can also be pushed beyond these lowest order terms to provide "nonlocal" 
interaction terms, as we recall in the next paragraph. The basic starting 
point is an operatorial equation, which we call here the "Snider equation," 
which is 

ih ~ Pi(1) - [HI(1 ), pi(1)]  

= Tr2{ [Vii(l, 2), np,(1) x Pi(2) •*3 } (1) 

where PI is the one-body density operator, H I is the one-body Hamiltonian 
(including kinetic energy and, for particles with internal variables, the 
corresponding Hamiltonian), Vn(1,2 ) is the two-body interaction 
Hamiltonian, and g2 is the operator that transforms the base of plane 
waves into incoming stationary scattering states (M611er operator, which is 
unitary when the attractive part of the potential is not sufficient to sustain 
bound states, as we assume throughout this article); Tr 2 denotes the opera- 
tion of partial trace with respect to all (internal and external) variables of 
the collision partner, and the brackets a commutator. 

When a Wigner transform of the two sides of Eq. (1) is taken, (zS) the 
time evolution of the distribution function (more precisely, of the distribu- 
tion operator if molecules or atoms have several internal states) is 
obtained; on the left-hand side, one gets the usual drift term plus the evolu- 



On the Snider Equation 727 

tion of internal variables (Larmor precession, for example); on the right- 
hand side, all the effects of the interactions are contained in the Wigner 
transform of a product of several operators. It is well known (8 10) that the 
Wigner transform of a product of two operators is not simply the product 
of the individual Wigner transforms; the Groenewold formula (11) shows 
that, in addition, it contains an infinite series of terms with higher and 
higher order space and momentum derivatives. Actually, what appears in 
(1) is the product of more than two operators, but the principle of the 
calculation is the same; it gives, in the same way, first a product with no 
derivative ("local" term, similar to the Boltzmann integral), then correc- 
tions with first-order derivatives with respect to position ("molecular field" 
terms), etc. Equation (68) of the original article ~2) gives the local term, and 
the general structure of the first-order terms can be found in the work of 
Thomas and Snider(5); more details can be found in Appendix A to the 
present article. See also refs. 12-15 for gradient expansions in different 
contexts. 

This clearly shows the generic character of an operatorial equation 
such as (t), which may be used as a source of various quantum corrections 
to the Boltzmann equation, and is therefore worth detailed examination. In 
the present article, we discuss in some detail the physical assumptions 
behind this equation, and we make the connection with recent work in the 
same domain. (16) We begin, in Section 2, with the statement of three dif- 
ficulties or questions which appear in the interpretation of Eqo (i). In Sec- 
tion 3, we discuss these difficulties in more detail, starting from the results 
of a short intermediate exact calculation valid for a system of two particles; 
we show that the major assumption behind the Snider equation is that the 
particles under study have a small interaction probability (large wave 
packets), which implies that the gas is sufficiently dilute for some density 
corrections to be neglected. Then, in Section 4, we propose a reinterpreta- 
tion of the equation which allows one to extend the range of validity of the 
equation (inclusion of second virial density corrections) and solves all 
questions of Section 2, we believe, in a satisfactory way. Finally, in Sec- 
tion 5, we examine the consequences of the reinterpretation on the domain 
of validity of the kinetic equation. 

The aim of this article is not to give a rigorous derivation of the Snider 
equation and its generalization to higher densities. It is rather to discuss 
the general physical ideas involved, in particular the quality of the 
approximate value of the two-body density operator which appears in the 
right-hand side of (1); we shall put the emphasis on the way in which it 
reconstructs the two-body correlations from an uncorrelated product 
simply with the help of M611er operators. We refer the reader to ref. 17 for 
a general discussion of density expansions in transport equations for dilute 
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gases, as well as to ref. 16 for more details on a formalism where one can 
obtain in a kinetic equation density corrections which are compatible with 
second virial corrections at equilibrium. 

2. T H R E E  D I F F I C U L T I E S  

2.1. A C o n t r a d i c t i o n  

The first equation of the BBGYK hierarchy can be written 

ih ~ p i ( 1 ) -  [HI(l) ,  pi(1)] 

= Tr2{ [ Vn(1, 2), DII(1, 2)3 } (2) 

To obtain (1) from (2), the authors of refs. 2 and 5 introduce the following 
"reasonable choice" for Pn: 

/2pi(1 ) x pi(2) (2' (3) 

The major purpose of the present article is to discuss the quality of this 
choice in more detail, since its physical content is not apparent at first 
sight. For a preliminary discussion, it is convenient to introduce the 
operator 

15(1, 2) = g215(1) x 15(2) s (3') 

Now, if one identifies r with Pii(1,2), the following equation 
automatically follows: 

(N-1)pi(1)=Tr2{Pn(1,2)}=Tr2{O15(1)x15(2)(2 t} (4) 

(where N is the number of particles; we choose the normalization of 
reduced density operators for which this number does not appear in the 
equations of the hierarchy, but in the relations of partial traces). Thus, the 
one-particle density operator is not equal to t5(1), because of the effect of 
the s operators in the right-hand side of (4) (except, of course, in the 
trivial case where the particles do not interact, so that the (~ operators are 
simply equal to one; in the general case, we discuss their effect in more 
detail in Section 3). In other words, in (Y), either 15 is the one-particle den- 
sity operator, or t5 is the two-particle density operator, but the two cannot 
be simultaneously true. Taking (3) for the two-body density operator is, in 
this sense, self-contradictory. 
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2.2. One-  and T w o - B o d y  Hami l tonians 

The second question we wish to discuss is actually not independent of 
the first, but here we put more emphasis on the unsymmetrical treatment 
of one-body and two-body Hamiltonians in (1). The first BBGYK equation 
written in (2) is strictly equivalent to 

( N -  l ) i h ~ p  I r = Tr2{ [g~(1) + ( N -  1) VIi(l, 2), Pli(1, 2)] } (5) 

It looks natural, if one approximates the two-body density operator by (3), 
to treat the Hamiltonians H~ and VII on the same footing and to insert 
directly (3) into (5); the result is 

(N-1) ih~tPi=Trz{[Hi(1)+(N-1) Vu(1,2),f2pi(l)•163 (1') 

From a purely logical point of view, this procedure seems to be as well 
founded as that which leads to (1), and one could expect (1') to be equiv- 
alent to (1), but in fact they are different. The difference occurs only in the 
"drift term" [the term in Hi ( l ) ]  of the equations, and can be seen more 
easily if a Wigner transform is taken: for spinless particles, the drift term 
of (1) then merely becomes the usual term of the Boltzmann equation, 
while that of (1') has a more complicated structure which depends in 
general on the properties of the M611er operator g2. We do not give this 
calculation explicitly here (it is actually very similar to that given in the 
Appendix, the only change being a replacement of the element of the T 
matrix by the same element of the f2 matrix, multiplied by the square of the 
wave vector of particle 1). We just note that the Snider approximation 
treats one- and two-body Hamiltonians in a different way for reasons 
which are not obvious at first sight (see also footnote 3 in Section 3.3). 

2.3. Vir ial  Correct ions 

We consider again a homogeneous system of spinless particles and 
now focus on the values of the one-particle Wigner transform f~(p) at equi- 
librium. Because the evolution of f~ is exactly that predicted by the 
Boltzmann equation in this particular case, it relaxes toward a Gaussian 
function of p in a time of the order of the time between collisions. This is 
indeed the well-known correct result for the equilibrium of a classical ideal 
gas, but does not contain the second virial corrections to the distribution, 
which, quantum mechanically, changes the p dependence in general (there 
are corrections due to both interactions and pure statistics). Therefore, if 



730 Lalo~ and Mu l l i n  

the Snider equation does not include these corrections in its local terms, 
one may also question the physical significance of its nonlocal corrections. 

The problem of virial corrections to the pressure is in fact discussed in 
Section 4.1 of ref. 5; from a Gaussian distribution function f~ the authors 
find a virial correction which resembles, but does not reproduce exactly, 
the quantum Beth-Uhlenbeck formula. Later, Snider and Rainwater redid 
this calculation ~ and showed that, if one adds virial corrections into f i ,  
two new terms arise in the calculation, a first which cancels the result of 
ref. 5, and a second which introduces exactly the Beth-Uhlenbeck virial 
correction. By this method, the exact equilibrium result is recovered. In our 
opinion, this procedure is nevertheless somewhat self-contradictory: the 
expression of the pressure tensor is obtained from a study of the conserva- 
tion laws in the frame of a nonlocal kinetic equation, but the distribution 
function which is chosen at equilibrium is not a stationary solution of the 
same kinetic equation. 

3. DISCUSSION 

In order to obtain a better physical understanding of the preceding 
difficulties, we begin with the study of a simple case: the evolution of a 
two-particle system, which can be calculated exactly. This wit ! help clarify 
the approximations behind (1). 

3.1. An Exact Calculation (Two-Body Collision) 

Let us consider a simple problem: two atoms (or molecules) are 
coming toward each other; because they originate from different beams, 
they are initially uncorrelated. During collision, correlations are of course 
introduced by the interactions, and the two-body density operator PII is no 
longer a product of two one-body density operators. Nevertheless, if one 
uses the inverse unitary M611er transformation, which, by definition, trans- 
forms the full two-body Hamiltonian into the sum of the two kinetic 
energies only (it "switches off" the interaction Vii ), one goes to the "inter- 
action point of view" where each particle becomes free, so that an initial 
factorization is always perfectly conserved; therefore, if one defines 

one can write 

r 2 )=  s (6) 

10free = p l ( l )  X f i2(2)  (7)  

(initially, the factorization is due to the fact the unitary transformation has 
no effect before the two wave packets overlap). Although we have not 
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written explicitly the time dependence of the /3's in the above equations, 
they are valid at any time t. The operators fii,2 are nothing but the density 
operators at time t of two free, noninteracting particles which started in the 
past from the same density operators as the two real atoms. Conversely, 
one has 

PII ---- ~'~/3free ~'~+ ---- nJOi(1 ) X/32(2 )/ '2 t (8) 

which allows one to express the two-body density operator in terms of the 
individual operators fi introduced in (6). We can therefore substitute this 
result into the first BBGKY equation [in either form (2) or (5)] and 
obtain a result which looks similar to the Snider equation: 

0 
ih ~i p~(1) -- [H,(1), p,(1)] 

= Tr2{ [ V,2, f2/3(1) x fi(2) Q*] } (9) 

(we assume that the initial density operators of the two atoms are the 
same, so that we no longer have to distinguish between /31 and /32, and 
write fi their common value). 

Actually, Eqs. (1) and (9) would be identical if the two density 
operators p~ and/3 were equal. Nevertheless, this is not the case in general: 
both operators are obtained from the same initial conditions, but while the 
former includes the effects of the interations, the latter corresponds to com- 
pletely noninteracting particles. The discussion of the validity of the Snider 
equation is closely related to the evaluation of the consequences of sub- 
stituting p~ for fi in (8). 

3.2. An A p p r o x i m a t i o n  

Still considering a two-particle system, we now discuss the quality of 
the approximation where/3 is replaced by p~. To evaluate mathematically 
the difference between these two operators, one can insert the relation 

inside 
. (2= 1 + GVII[-2 = 1 + GT (10) 

p,(1) = Tr2 {pi,(1 , 2)} = Tr2{s x/3(2) s (1t) 

(where G is the free-particle propagator and T the transition matrix of 
ordinary collision theory) and one obtains 

pi(1) - fi(1) = Tr2 { GTfi(1) x fi(2) + h.c. } 

+ Tr2{GTfi(1) • fi(2) T'G*} (12) 
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where h.c. stands for Hermitian conjugate. Then one can, for example, 
expand T in powers of the interaction potential to obtain the right-hand 
side of (12) to all orders in Vn(1, 2). Of course, long before collision, when 
the wave packets are not yet overlapping, the action of the M611er operator 
reduces to unity (the incoming stationary scattering states are precisely 
built for this purpose) and (12) is equal to zero; but this is not a very 
interesting case because, before collision, the right-hand side of (9) vanishes 
anyway. In general, during (or after) collision, the two operators fi and p~ 
are distinct. 

For a more detailed discussion, it is useful to apply a Wigner transfor- 
mation to relations (8) and (11); this introduces the transform of PH, which 
depends on the positions and momenta of the two particles, or equivalently 
of the relative position and momentum: 

r = r l - r 2  (13) 

and 

p = (pl - p2)/2 (14) 

as well as of the position R and momentum P of the center of mass. The 
mathematical form of the result can be found in Appendix B, but here we 
limit ourselves to a general discussion without technical details. The partial 
trace over the variables of particle 2 which appears in (11 ) corresponds, in 
terms of the Wigner transform, to an integration over r2 and P2 in all 
space, or equivalently over r and p (with a factor 8 of no importance to the 
present discussion). The one-particle density operator PI can therefore be 
obtained as the sum of the contributions of three different regions in the 
phase space: 

(i) The "entering region": When r is large enough (compared to the 
range of the potential and the de Broglie wavelength) and when the scalar 
product p . r  is negative, one is considering a region of the phase space 
which corresponds to particles coming toward each other (incoming part of 
the wave packet); they have not yet interacted, and the effect of the g2 
operators in (8) can be ignored. For these regions, the Wigner transform 
of p~ coincides with the product of the Wigner transforms of r and r 
and the corresponding contribution to PI in the partial trace (11) is simply 
proportional to t51. 

(ii) The "interaction region": For small values of the interatomic 
distance r, the particles are in the middle of a collision and the role of the 
s operators in (8) is now essential: they introduce the short-range correla- 
tions which are created by the potential. The Wigner transform of Pn is 
therefore significantly different from the product of the Wigner transforms 
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of the r for example, if the interaction potential includes a hard core, the 
former vanishes at short relative distances, but not the latter. 

(iii) The "outgoing region": Here r is large, but the scalar product 
p. r is now positive. For this region, the effect of the g? operators in (8) is 
to go from free particles, which propagate in straight lines, to interacting 
particles, which scatter each other. In general, this process can completely 
change the direction of p (and that of Pl) as well as the location of a 
particle after collision. Now, if the wave packets of the particles are not too 
wide (not much wider than the square root of the collision cross section) 
and go through the same region of space, they are totally scattered by their 
mutual interaction; then, because the outgoing region of phase space can 
only be reached after a scattering process, for this region of phase space PI 
receives in the partial trace of (11) a contribution which is completely dif- 
ferent from ft. Nevertheless, in the opposite case, that is, when the initial 
wave packets are much broader than the scattering cross section, there is 
a large probability that the particles will "miss" the potential and not be 
scattered at all, so that the contribution to p~ remains proportional to r in 
a large fraction of the "outgoing region." There is of course still a part of 
this region where the effect of the potential is important: the "wake" of the 
particles, where the potential generates scattered waves and, at the same 
time, creates by destructive interference a "shadow" in the incident wave 
corresponding to particles disappearing from the initial velocity; it is clear 
that this region gives in general very different contributions to the two 
operators. But, if the wave packets are sufficiently large, most of the out- 
going region remains insensitive to the potential and contributes in the 
same way to p and/5. 

We are now in a position to predict when the substitution of p~ for 
is a good approximation: this is the case as long as the total probability 
that the particles are being scattered, or have been scattered in the past, 
remains small. This happens, for instance, if the regions of the phase space 
where the Wigner transform of the density operator P~I is not zero are 
mostly regions where r ' p  is negative, extending only slightly over regions 
of positive values of this scalar product; in other words, in situations where 
only the "heads" of the wave packets have already scattered each other. 
But, more generally, it is also true in every situation where the wave 
packets are wide enough (compared to the square root of the cross section) 
so that most of them are not scattered and remain insensitive to the effects 
of the potential. Then, Eq. (3) can be used as a good approximation to Pn; 
this is correct even at a short relative distance between the particles, in 
regions where the potential is strong, because the effect of the f2 operators 
in (3) is precisely to add to PH the appropriate short-range correlations 
which do not exist in the product of the one-particle operators. 



734 Laloi~ and Mullin 

But one must keep in mind that, for small wave packets which are in 
the middle of a collision and efficiently scattering each other, or after this 
type of collision has occurred, (3) is a bad approximation to the short- 
distance properties of PH and should not be used; in a sense (3) takes into 
account the effects of the potential twice, because they already strongly 
affect p~ and are added again by the ~ operators. To give a comparison, 
a similar error would be to replace Pfree by PII itself in (8), where the 
unitary transformation ~2 would then introduce again the correlations 
already contained in PH. Using (3) is acceptable only for large wave 
packets because then the product pl(1)xp~(2) resembles locally much 
more Pfree than PII itself. 

3.3. Rela t ion to  the  Snider  Equat ion 

We now apply the preceding discussion to the derivation of a kinetic 
equation for the study of a gas containing a large number of particles in a 
nonequilibrium situation. The gas is supposed to be sufficiently dilute to 
justify a study in terms of two-body collisions only; three- or higher-particle 
interactions are therefore ignored. A dilute gas is of course different from 
a two-particle system; for example, for times long compared to the average 
time between collision rio, practically all atoms have undergone multiple 
collisions, while this never happens for an isolated system of two particles 
only. But, for times short compared to tic, nothing takes place in the gas 
but almost isolated binary collisions occurring at various points of space, 
so that the discussion of the preceding section is indeed a useful guide for 
the validity of the kinetic equation at short time scales. 

Our main purpose in this section is to discuss the validity of the Snider 
equation in a qualitative way and to show that it is based on a low-density 
approximation from which second virial corrections are excluded. The 
arguments we give here rely rather on plausibility than on a rigorous proof 
(e.g., the discussion below on the size of wave packets). See Chapter 7 of 
ref. 17 or Eqs. (12)-(23) of ref. 18 for a derivation of the Snider equation 
given explicitly in terms of a density expansion of the BBGKY equations; 
for a detailed discussion leading to a precise estimation of the density 
corrections to the Snider equation (at least up to second virial type correc- 
tions), we refer the reader to the formalism developed in ref. 16. 

Mathematically, if one inserts (12) into the commutator in the right- 
hand side of (9), one can have an idea of the kinds of terms ignored in the 
Snider equation. Because the right-hand side of (12) is already a density 
correction to the one-body operator, proportional tO the square of the one- 
particle density, its insertion into the commutator containing V12 of (9) will 
give a term cubic in density (this can also be seen by using the density 
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expansions of ref. 17 and, incidentally, provides a satisfactory answer to the 
question asked in Section 2.2). Therefore, we expect that the neglected 
terms are higher-order corrections to the ordinary Boltzmann collision 
term. 

The crucial point for the validity of this equation is not so much the 
accuracy of the choice made in (3) for pii(1, 2) in itself, but the consequen- 
ces of this choice on the value of the commuta tor  with Vn(1, 2) which 
appears in (1). Since the interatomic potential has a finite (microscopic) 
range, what really matters are the properties of this density operator when 
the particles are at short relative distance. 3 Now, the unitary transforma- 
tion associated with D can totally modify the direction of r, but not much 
its length r (the relative distance between the particles), the maximum 
change being of the order of a few times the potential range or the de 
Broglie wavelength. Consequently, the short-distance properties of (3) 
depend mostly on the properties of the Wigner transforms of pi(1) and 
pi(2) at the same point of space, or in a small microscopic domain centered 
around the point of collision. The quality of approximation (3) is good, 
therefore, if locally the Wigner transform of the product p i (1 )x  pi(2) is a 
reasonable approximation to fSfree defined in (6), or equivalently if p1 is a 
good approximation to ft. 

We can thus directly use the conclusions of Section 3.2 to set the limits 
of validity of an approximation of this type: it is good provided that the 
atoms in the system can be described by wave packets which are large 
compared to the potential range. For  a many-particle system, one expects 
that the maximum size of the wave packets which remains compatible with 
a treatment of two-body interactions only is of the order of the average 
distance between the particles; otherwise, more than two wave packets 
would always overlap at every point of space. Therefore, if the gas is very 
dilute, the particles can indeed be described by large wave packets, and it 
is reasonable to assume that the local properties of the Wigner transform 
of the one-particle density operator  reflect mostly the part  of the wave 
packets which is uninfluenced by the interactions: any collision partner has 

3 This remark is sometimes invoked as a solution of the difficulty mentioned in Section 2.2: the 
Snider approximation (3) for PII might be appropriate at short relative distances only. In 
other words, it could be good for particles in the middle of a collision, but not necessarily 
between collisions. It would therefore give the evolution due to the two-body Hamiltonian 
almost correctly, but not for that due to the one-body Hamiltonian. Actually, the discussion 
of this section (in particular the paragraph before last) shows that this is not true: 
(3) is not a better (or worse) approximation to Pn at short distances than at long distances. 
Mathematically, this arises from the fact that (3), as well as the exact expression (8), both 
contain a product of operators which cannot have sharp variations when the relative 
distance between the particles varies over a microscopic length. 
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a large probability to be at a large distance, at a point of space where 
it cannot influence (or have influenced) the test particle. The simple 
decorrelation operation, where Pn is replaced by the product of its partial 
traces, therefore reconstructs a good approximation to Pfree; that is, it is 
almost equivalent to the unitary transformation (2. This is why applying f2 
to the product, as in (3), is almost exactly what is needed to reconstruct the 
correct two-body correlations which play a crucial role during collisions. 
We obtain in this way the essence of the physical justification of Eq. (1). 

Even if it is not directly relevant to the validity of the equation, it is 
instructive to discuss the precision with which (3) reproduces the two-body 
correlations in a dilute gas at large distances. In the "entering region," 
when the particles are far apart,  we have seen in the preceding section that 
the M611er operators have no effect at all, so that P~I is predicted to be an 
uncorrelated product of two p1 operators, a well-known correct result. In 
the "outgoing region," the f2 operators introduce correct correlations only 
inside the "wake" of the particles, which is physically satisfactory, but this 
happens without any limit on the distance between the particles. Conse- 
quently, they fail to reproduce the progressive attenuation of these correla- 
tions when the distance becomes comparable to the mean free path in the 
gas, under the effect of interactions with other collision partners. Because 
this is an effect of multiple collisions, it is not surprising that a simple for- 
mula such as (3) is totally unable to mimic it; we have already emphasized 
that, because the potential range is supposed much shorter than the mean 
free path, this difference does not affect the right-hand side of (1). 

We conclude that, for a dilute gas, the Snider procedure (~) is indeed 
well adapted. It is actually a very elegant way to close the infinite BBGKY 
hierarchy in terms of p~ alone; the basic idea is to replace the unitary trans- 
formation (6), which allows one to introduce a factorization, by a simple 
decorrelation operation. Nevertheless, one should keep in mind the limits 
of this method, which are clearly related to the limits of using Eq. (1) for 
the study of a two-particle collision: one must assume a negligibly small 
probability that the two particles have undergone a collision. Terms of the 
order of either the range of the potential or the de Broglie wavelength 
divided by the total length of the wave packets are neglected. 4 In other 

4 More precisely, the error introduced by the Snider approximation to Pfree is of the order of 
(some power of) the ratio between a microscopic length and the size of the wave packets; 
on the other hand, we have seen above that the approach based on the study of two-body 
interactions can only be valid if the size of the wave packets is not larger than the average 
distance between the particles. Consequently, the error is at least of the order of (some 
power of) the ratio between the potential range or the de Broglie wavelength and the 
average distance between particles, namely a virial correction. 
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words, one does not keep corrections 5 which are of the order of the 
probability that a test a tom at a given time is engaged in a collision, 
namely second virial corrections. In the next section, we briefly discuss a 
method which allows one to obtain the first corrections with the help of the 
"free Wigner transform." 

4. A P R O P O S E D  R E I N T E R P R E T A T I O N  

Two points of view on the Snider equation are possible. The first is to 
consider the equation as a quantum version of the Boltzmann equation, 
including internal states for the particles, which is valid only to lowest 
order in density (no second virial corrections) and which provides correctly 
only local terms in the quantum collision integral. Seen in this way, the 
Snider equation becomes equivalent to the Waldmann equation, and all 
difficulties of Section 2 either have been solved in the preceding discussion 
or simply disappear. If one uses systematic density expansions of kinetic 
equations as in ref. 17, one is led rather naturally to this point of view, and 
the content of the present article appears mostly as a physical discussion of 
the lowest density orders. This is of course a perfectly acceptable viewpoint, 
but automatically casts doubts on the consistency of calculations based on 
the Snider equation such as those of ref. 19. The second point of view is to 
try to extend the validity of the equation to second virial corrections and 
nonlocal terms, and we take this attitude in all the rest of this article. 

We retain two main ideas from the preceding discussion. First, in 
general, there is in a sense more useful information contained in f5 than Pl 
for initially uncorrelated particles: from the former one can reconstruct P~I 
by (8) and therefore the short-range correlations between particles which 
play a crucial role during the interaction; the operator p~ can be obtained 
from fi, but, in general, the reverse is not true. Since the two operators 
depend on the same number of parameters (they act in the same state 
space), t5 seems to be a better mathematical  object than p~ to write a 
kinetic equation that is compatible with an improved treatment of correla- 
tions. The second is that, in the particular case where the particles have 
wide wave packets, the two operators coincide within corrections which are 
of the order of second virial corrections, and can therefore be taken equal 
if one is not interested in such corrections. 

These two remarks bring us very close to the formalism of the "free 

5 See also the discussion given in the paragraph just before Eq. (23) of ref. 2, where mention 
is made of neglected density corrections. Note also that the operator denoted p~l) in the 
calculation leading to this equation is the one-particle density operator just before collision 
(not during or after collision), that is, an operator very close to the entering part of the free 
Wigner transform used in ref. 16. 
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Wigner transform" developed in ref. 16, where care is taken to take into 
account the differences between the two operators. Roughly speaking, in 
this formalism, the kinetic equation is indeed written in terms of t~ (the 
"incoming free part") instead of p~, and the correction introduced by the 
differences are evaluated afterward. Actually, the distribution function 
appearing in the kinetic equation is not exactly the Wigner transform of/5 
only, because this operator describes fictitious particles which evolve very 
differently from the real particles after collision; the free Wigner transform 
is a mathematical compromise which is equal to PI (and to/5) before colli- 
sion, to fi during collision, and to p~ again after, which is a way to switch 
off the interactions during collision but to retain their long-term effects. As 
a consequence, the free Wigner transform is a more subtle object than t~, 
so that the corresponding kinetic equation of ref. 16 is not simply obtained 
from (9), which is limited to a system of two particles. 

We therefore propose to reinterpret Eq. (1), or more precisely its 
Wigner transform, as a mixed equation where in the right-hand side 
pl(1)xp~(2) should be replaced by the free Wigner transform (which 
indeed factorizes), while on the left-hand side no change is made and the 
usual distribution remains. Because the difference between the distributions 
associated with the free or the real Wigner transform is second order in 
density, the error introduced by confusing them is only relevant if one is 
interested in second-order density corrections, but can be ignored otherwise 
(for more details on the relation between the two distributions and on how 
one can carry out precise calculations based on the free distribution, see ref. 
16). We come again to the same conclusion, but this time in a more precise 
frame where the density corrections can be obtained quantitatively: the 
Snider equation (1) is indeed valid, but only to lowest order in density; it 
should therefore not be used to obtain second virial corrections. 

5. C O N C L U S I O N  

If one accepts the above reinterpretation, all the difficulties discussed 
in Section 2 disappear, even if density corrections to the Snider equation 
are taken into account. The contradiction of Section 2.1 is no longer 
present: if one puts the free Wigner transform in the interaction term, the 
equation of evolution is equivalent to (9), which is strictly exact in a two- 
body collision. The second virial corrections mentioned in Section 2.3 are 
automatically correct, since for the free Wigner transform (which charac- 
terizes the distribution of the particles only when they are far from all other 
particles), one has at equilibrium (16) 

= Z -1 e x p ( -  ~2/2m) (15) 
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(with usual notation), from which the virial corrections to p~ and Pn can 
be obtained. ~ On this matter, we feel that the method of ref. 19 uses the 
Snider equation beyond its domain of validity. The origin of the unphysical 
model introduced in Section 2.2 is also clear: if the error made by replacing 

by PI is a first-order-in-density (relative) error, the substitution intro- 
duces only higher-order errors when made in the collision term; on the 
other hand, if the same procedure is applied to the drift term, which is itself 
only a first-order-in-density term, then an error comparable to the collision 
term is introduced, so that the theory is no longer valid. 

Our conclusion is therefore that Eq. (1) can be used as long as one is 
only interested in lowest order density effects, as one does when using the 
Boltzmann equation. It is doubtful that the "nonlocal" terms obtained 
beyond the lowest order gradient terms (corrections to Boltzmann terms 
for particles without internal states) are physically meaningful in general, 
precisely because they are already virial corrections: such terms are 
naturally considered as "molecular field" terms which change the dispersion 
relation of the particles (or quasiparticles in the language of the Landau 
kinetic equation), and act as perturbations to the "drift" term; in other 
words, they are put on the left-hand side of the equation, where they 
introduce density corrections to the drift term, and virial corrections to 
transport coefficients (transport by binary collisions). Because the equation 
is valid only if the differences between the real and the free distribution are 
neglected, keeping these terms could lead to corrections which are beyond 
the accuracy of the calculations. 

APPENDIX A. WIGNER TRANSFORM OF THE SNIDER 
COLLISION INTEGRAL 

The Snider collision integral which appears in (1) is 

Is = Tr2{(ih) 1 EVII(1 ' 2), ~Qpi(1) • pi(2) s t ] } (A1) 

Thomas and Snider give an expression of the Wigner transform of this 
integral and discuss its "localization"; see Eq. (12) and Section 3 of ref. 5. 
Here we wish to develop this calculation in a little more detail; our aim is 
in particular to distinguish between the "molecular field" terms which 
appear in the gradient expansion, and the "retardation" terms, as well as 
between forward and lateral scattering terms. The Wigner transform F w of 
the function in curly brackets in (A1) is easily obtained from the general 
Wigner transform formula, which gives 

Fw(R,r,P,p)=(2~h)-o(ih)-' f d3Kf d3tce iK 'Re  iK'r 

x ( K + , k + ]  Vf2pi(1)xp~(2)f2*[K , k  )+c . c .  (A2) 
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where 

P K P ~ (A3) K• = ~-+ ~, k+ =~_+~ 

and c.c. means complex conjugate [we have simplified the notation 
Vn(1, 2) to V]. Since VO = T, the right-hand side of (A2) is equal to 

(27~) 6(i]~)-1f d3K f d3K. f d3kl f d3k2eiK.Rei~.rT(k+ ' kl ) 
i 

x (k21 ~u~+))(K+,k~l_ p~(1)xp~(2)IK_,k2)+c.c. (A4) 
with 

T(k+, kl)= <k+] Ttkl) 

<kl ~ + ) )  = <k/g2 Jk') 
(A5) 

Now, using the inverse Wigner transform formula, we can introduce into 
(A4) the Wigner transform f(r, p) of PI (to avoid unecessary complications, 
we consider here particles without internal structure, so that the Wigner 
transform is simply a function of r and p): 

f(ra, Pl)-- W.T.{p~(1)} (A6) 

and replace the matrix element of the product of p's by 

h6 f d3R, f d3r, e iK-r'ei(k, k2) -r' 

( r' ) ( r' P - h ( k ~ + k 2 )  ) x f  R'+}-,  P + h ( k l + k 2 )  x f  R ' - -  (A7) 
2 2' 2 

When inserting this result into (A4), a delta function appears: 

f d3KeiK.(R-R') (2Zr)3 (A8) ~(R R') 

and one finally obtains the following expression for the Wigner transform 
I W(r I , p 1) of the Snider collision integral (A 1 ): 

IsW(rl,pl)=(ih) l(27r)-3fd3qfd3rfd31cfd3k'lfd3k'2fd3r ' 

xei"'re i(kl ki)'r'T(k+, k'l)(k_l ~P(+))* k; 
( r - - r '  q h ) 

•  rl 2 ' m - ~ + g ( k i + k ; t  

x f  r l - - - ~ - - , p ~ - ~ - ~ ( k ~ + k ; )  +c.c. (A9) 
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with 

and 

q = Pl - P2 = 2p = 2hk; r = r I - r2 

k_+ = (p +_ hK)/2h 

(A10) 

(Al l )  

1 
<kl ~(k,+) > =6(k-k')+h(og~_og~,)+ie T(k, k') (A12) 

The right-hand side of (A9) contains a term quadratic in the T matrix, 
which is the contribution of lateral scattering to the collision integral, and 
a term linear in T, which corresponds to forward scattering. 

As in ref. 5, we now assume that the one-particle distribution function 
varies slowly in space over microscopic distances and expand the product 
o f f ' s  in (A9) according to 

r 
f(r~, p'1)f(rl, p ; ) - ~  .Vrl If(r1,  p ' l ) f(r l ,  p[)] 

r '  
+ 2" [f(rx '  P'~)VrL f ( r l '  p~)--f(r~, p~)Vrlf(r l ,  P'I)] + "- (A13) 

with the notation 
, q h 

Pl,2 = P~ - ~ + ~ (k~ + k2) (A14) 

The first term in (A13) corresponds to the "local" term, the two which 
follow to first order (in gradients) nonlocal terms. 

A1.  

and 

Local Te rm 

To zeroth order in gradients, the following two integrals occur: 

f d3r = 6(K) eiK.r (2~) ~ 

f d3r e i ( k l -  k ; ) ' r '  = ( 2 ~ )  3 6(k'1 - k 2 )  

(A15) 

(A16) 

The forward scattering term then becomes 

r ,  

(ih) ~ j d3q[Tk(1 ) - T * ( 1 ) ] f ( r ~ , p l ) f ( r ~ , p ~ - q )  

= - f  d3qqar( k)f(rl,  Pl ) f ( r l ,  P - q )  (A17) 
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where a r  is the total cross section, defined as usual as a function of the T 
matrix. In the lateral scattering term, the following function appears under 
the integral: 

1 ) 2i~r 
IT(k ,k ' ) i  z h(mk_g)k,)_ie,--c.c.~=--~6(oJk-cok,)lT(k,k')12 (A18) 

so that one gets 

with the classical notation ak(k, k') for the collision cross section corre- 
sponding to a change of the relative momentum from hkk to hkk'. 

Therefore, the local term is nothing but the Boltzmann collision 
integral for particles without internal levels. 

A2 .  F i r s t - O r d e r  T e r m s  

A 2 . 1 .  r G r a d i e n t s .  For the term linear in r, the delta function of 
(A15) is replaced by the gradient of a delta function, implying that one has 
to take the derivative with respect to K of the function under the integral. 
This introduces a contribution proportional to 

f d3q f d3k ' Vk[T(k, k ' ) ( k  I ~(k +))  + c.c.] 

(A20) 

The corresponding terms are "retardation" terms, which contain a single r 
derivative of the distribution function; they contain "off-shell" values of the 
T matrix. Inserting (A12) shows that these retardation effects occur for 
both forward and lateral scattering. Actually, the off-shell terms in lateral 
scattering turn out to have convergence problems, (2~ but this is not the 
object of the discussion here. 

A2.2. r' Grad ients .  These gradients have a more complicated 
structure, which is natural, since the relative position, more than the 
center-of-mass position, is the relevant variable modified by the collision. 
The right-hand side of (A16) is now replaced by the derivative of a delta 
function of the difference (k 2 -  kl), which introduces two kinds of terms: 
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(i) Taking the derivative of the T's produces more retardation 
terms, which add to the terms obtained in Section A2.1; we do not write 
them explicitly, but they are easy to calculate. 

(ii) Taking the derivative of the distribution functions themselves 
introduces new kinds of terms, which are similar to "molecular field" terms. 
We only sketch here the structure of the forward scattering term: 

fd q[3 [ ' V p ~ - V r l - V p l , V r z - V p z . V r ~ - ~ - V p z - V r z ] f ( - ) f ( - )  (A21) 

Strictly speaking, only the first of the four cross-derivatives is really a 
molecular field term, but the three others are direct generalizations. For the 
lateral scattering terms, a formula similar to (A21) is obtained, but as in 
(A19), the integral is a five-dimensional integral. All these terms contain 
only "on-shell" T-matrix elements. 

APPENDIX B. WIGNER TRANSFORM OF RELATIONS (8) 
AND (11) 

Relations (8) and (11) are central in the arguments developed in this 
article, where we have limited ourselves to qualitative discussions. Here we 
give the precise expressions of their Wigner transforms. With notation 
similar to that of Section 1, we obtain the following expression for the 
Wigner transform of (8): 

f f f w f l I  (R, r, P,  p) = (2~)-3 d3K d3kl d3k2 d3r , 

xei~,reifk2 k t ) ' r ' ( k  ~(k~))( ~(+11 k_ )* 
+ k 2 

(m) 

where f w  is the Wigner transform of the two-body density matrix, and f 
that of/5. Equation (B1) gives the effect of the unitary transformation on 
the Wigner transform. To obtain the Wigner transform f~ of p~ from this 
equation, one has to make the following substitutions: 

R~rl-r /2  (B2) 

P ~ 2 p l - q  (B3) 

822/59/3-4-14 
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in 
W i g n e r  t r a n s f o r m  of  (11):  

f i ( r l ,  p l )  = (2re) 3 f  d3r f d3q f d3~c f d3kl f d 3 k 2 f  d3r , 

x e i " ~ e  i~k2- k~)-~ ' (k+ ] ~ +  ) ) / 7 z ( + )  I k _ ) *  
\ k2 

r ' - r  q , k l + k 2 ~  
•  rl 

•  1 r ' + r  q k ,  2 k____Z) 
2 ' P l - - 2  - h  

(B1)  a n d  i n t eg ra t e  it ove r  d3r a n d  d3q in all space,  which  gives the 

(134) 
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a n d  useful  adv i ce  which  resu l ted  in severa l  i m p r o v e m e n t s  in the  tex t  of  this  
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